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Uncertainty in Measurement of Isotope Ratios by Multi-Collector Mass Spectrometry

Abstract

Multi-collector mass spectrometry, both inductively coupled plasma source (ICPMS) and thermal 
ionization source (TIMS), can measure isotope ratios with great precision because the ion beams from 
different isotopes are measured simultaneously with different detectors. Accurate isotope ratio results 
require that the measurement system be fully understood. Accounting for all sources of uncertainty in 
such analyses, according to JCGM Evaluation of measurement data — Guide to the expression of 
uncertainty in measurement (GUM), requires understanding the characteristics of the ion beam, and the 
instrument response. Modern multi-collector mass spectrometers record multiple electronic integrations 
of ion beam signals for a set time period, for example 5 seconds, and ratios of these signals on two 
detectors are calculated. The standard uncertainty on the mean of these ratios, a measure of the 
repeatability, is an important part of the combined standard uncertainty, but it is only one component. 
Often, the instrument software embeds constants and calculations in the data that is recorded, and post 
data acquisition processing introduces other variables. All of these constants and variables that are 
corrections to a measurement must be considered in the treatment of uncertainty. A general equation for 
an isotope ratio measurement by multi-collector mass spectrometry is presented which considers the most 
common of these corrections. Accurate calculation of the combined standard uncertainty using this 
equation requires that the standard uncertainties for the individual ion beam signals be defined. However, 
the dispersion of these signals as calculated by standard statistical methods does not necessarily reflect the 
excellent repeatability of the ratio measurements, which is the hallmark of multi-collector instruments. To 
capture this repeatability it is necessary to partition the standard uncertainty on the ratio measurement 
between the signals for the numerator and denominator isotopes. An equation for this partitioning, and the 
sensitivity coefficients for all of the variables and sub-functions of the general equation are given.

1. Introduction

IAEA safeguards requires that isotopic measurements of uranium and plutonium be made of various 
samples for purposes of material accountability, compliance monitoring, or detection of non-compliance 
with a treaty, an agreement, or a facility declaration. In order for these measurements to be not only 
complete, but useful for their purpose, they must include a statement of uncertainty. In the terminology of 
Guide to the expression of uncertainty in measurement (GUM) [1], the uncertainty of the measurement 
ideally will capture all contributions from both random and systematic effects, that is, all “influence 
quantities” will be accounted for in the mathematical model that transforms observations into the 
measurement result. A mathematical model is presented here for isotope ratio analysis by simultaneous 
ion beam measurements with multi-collector mass spectrometers. This model includes most of the
influence quantities that contribute to the uncertainty on the result of such measurements.

Very high precision measurements are possible with multi-collector mass spectrometers because any 
variations in ion beam intensity are recorded simultaneously on different collectors for each isotope. This 
technology allows excellent intra-analysis repeatability, which is commonly termed the internal precision.  
Most analysts, having recognized that the internal precision does not capture the inter-analysis 
repeatability, will determine the dispersion on repeated analyses of a common sample type, and report this 
so-called “external precision” as the uncertainty for those measurements. The difficulty that arises in 



applying this scheme to mass spectrometry analyses for safeguards is that there is no “common type” of 
sample. Each sample, especially environmental monitoring samples, is unique. They have widely diverse 
uranium and plutonium concentrations and isotopic ratios, and the critical measurement parameters that 
might allow the application of external precision, such as ion beam intensity, cannot be controlled. 
Therefore, it is necessary to apply the principles of GUM as rigorously as possible.

2. The general equation for measurement of an isotope ratio

The atomic ratio of isotope A to isotope B , ��/� is 

��/� = �� �⁄
�
� ∑ ��

��
�
��� (1)

In Eq.1, �� �⁄ is a correction factor that varies depending on the isotope ratio, and �� and �� are the 
corrected ion beam signals.  For multi-collector inductively coupled plasma mass spectrometry (MC-
ICPMS),  �� �⁄ is the mass bias correction factor, which is empirically determined for a particular 
instrumental session through the measurement of standard reference materials.  For thermal ionization 
mass spectrometry (TIMS),  �� �⁄ is the fractionation factor, which is usually determined by independent 
measurements of standard reference materials that are analyzed using the same instrumental protocols and
under the same physical conditions as the sample measurements. The subscript i on �� and �� refers to the 
individual measurements of the signal.  Generally, ion beam intensities are integrated for a time period, 
for example 5 seconds, and multiple integrations (n of them) are recorded.  The simple arithmetic mean of 
the ratios obtained for each time period is calculated.  A measure of the repeatability of these 
measurements is calculated as the standard uncertainty on the mean and is an important part of the 
combined standard uncertainty, but it is only one component.  �� and �� have embedded within them 
other corrections which must be considered.

�� = ��(�� − � − � − ��) (2)

��  = ��(�� − � − � − ℎ�) (3)

In these equations, �� and �� are detector calibration factors and it is assumed here that they may be 
applied to all of the variables inside the parentheses.  These factors depend on the ratio and the detectors 
used.  They may be simply the Faraday cup relative gain factors (the pre-amplifier gains), or they may be 
empirically determined detector efficiencies or relative detector efficiencies, or they may be a 
combination of both.  The instrument detector readings, �� and ��, are further corrected for detector 
baseline (let these be c and f), for instrumental background (let these be d and g), and for any signal that 
may originate from a spike isotope which needs to be subtracted from the sample (let these be �� and ℎ�).   
Alternative calculations of spike subtraction may be formulated, but the contribution to the combined 
standard uncertainty from spike subtraction is expressed more simply in this way.  ��/�, ��, ��, ��, ��, ��
and ℎ� are all functions themselves of additional parameters, while the detector baselines and blank 
corrections, c, d, f and g may be calculated more simply.  Of course, it is possible to consider additional 
influence quantities for the detector baselines and blanks and these should be incorporated also, if they are 
considered to be important. These variables and the method of assigning standard uncertainties to them 
are given in the following section.   



3. The expanded equation and assignment of standard uncertainties

Expanding Eq.1, the mathematical model becomes

��/� = ��/�
��
��

�
� ∑ (���������)

(���������)
�
��� (4)

Note that �� and �� have been taken outside the summation, which is allowable given the assumption 
made in Eq. 2 and Eq. 3, noted above, that they apply to all components within the parentheses. Table 1
describes the variables in more detail and gives a method that can be used to assign their standard 
uncertainties.  For the variables that are themselves functions, the parameters they depend on are noted in 
this table and the sub-functions are given below.  



Table 1.  The variables of the general equation for measurement of isotope ratios and methods for 
determining their standard uncertainties.

Variable Description
Uncertainty Type and Method 
used to assign standard 
uncertainty

Dependent on other 
parameters?

��/�

For MC-ICPMS, this is the 
instrumental mass bias correction 
factor for the ratio A/B.  The value 
is particular to a given measurement 
session.  For TIMS, this is the 
fractionation factor determined 
empirically by analysis of standard 
reference materials.

Usually Type A: Calculated from replicate 
measurements of certified reference 
materials.  Sometimes Type B: For MC-
ICMS, to prevent underestimation when 
replications are limited, a pooled estimate 
from historical data of the variability of the 
standards may be used in the calculations.

Yes.  This factor depends 
on measurements of 
CRMs and on the 
certified values for the 
standards.   A function 
for MC-ICPMS is given 
below. 

GA , GB

The efficiency/gain factors for the 
detectors used to measure isotope A 
and B.  Ideally, these factors 
transform counts per second to ions 
per second, but in reality, it is only 
important that the magnitude of GA
relative to GB be accurate.

Usually Type A:  Determined from 
calibration measurements, and may be 
derived from the same CRM analyses used 
to define K.  As for K, if the range for a 
limited number of replications is small, then 
a Type B standard uncertainty based on 
historical data should be used.  (For Faraday 
detectors, these factors are often 
automatically included in the raw data and 
the standard uncertainties are ignored).

Yes, for pulse counting 
detectors.  These factors 
depend on measurements 
of CRMs and on the 
certified values for the 
standards.   A function 
for MC-ICPMS is given 
below.

�� , ��

The signal intensities for isotope A 
and B as measured on the detector.  
For pulse counting detectors, the 
signal is corrected for dead-time.  
Common units must be used 
throughout.  Instrument software 
usually does the conversion and 
expresses all ion signal intensities in 
volts, which embeds a constant for 
the Faraday cup circuit resistance. 

Type A:  The standard uncertainty may be 
calculated from counting statistics, but a 
better method for determining the 
variability of the signal intensity is to 
partition the measured uncertainty on the 
ratio of A/B between the two isotopes.  A 
formula for this partitioning is given in 
Section 4 below.  For pulse counting 
detectors, the standard uncertainty also 
includes a component from the dead-time 
correction.

Yes, for pulse counting 
detectors dead-time 
corrections are applied.  
The function is given 
below.

c, f Baseline correction values.

Type B:  A sample-specific measurement 
that is generally made at ± 0.5 amu.  The 
standard uncertainty could be assigned as 
20% of the range of these values, for 
example, to account for the variation in ion 
tailing from adjacent isotopes. 

No.  These can be 
considered as primary 
variables.

d, g Instrument background values

Type A:  For MC-ICPMS, the value is 
measured on blank acid solutions 
immediately prior to and using the same 
data collection protocols as the sample 
analysis.  For TIMS, these backgrounds
may be negligible.   

No.  These can be 
considered as primary 
variables.

��, �� Spike correction values

Type A:  The values are determined by 
measurements of the spike isotope (C) and 
knowledge of the A/C ratio in the pure 
spike.  The standard uncertainty is a 
combination of the uncertainties on these 
parameters.

Yes. The function is 
given below.



�   The Mass Bias Correction Factor

For MC-ICPMS, an exponential expression is the most commonly used formula for correcting the 
measured isotope ratio for instrumental mass bias.  The correction factor is

��/� = ����� �
���� ��

�
(5)

The exponent, , is 

� =
�����

��
���

��
��

����
� �

��(���� � ���� �⁄ ) (6)

where the certified or accepted atom ratio of isotope x to isotope y in the standard is  ��
��

���
, and the 

measured ratio of these isotopes in the standard is  ��
��

����
.  

Ignoring any uncertainty in the atomic mass of the isotopes, which is very small, the sensitivity 
coefficients for KA/B are:

��� �⁄
���

��
���

= ����� �
���� ��

� ��(���� � ���� �⁄ )
��(���� � ���� �⁄ ) � �

��
��

���

� (7)
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����

= ����� �
���� ��

� ��(���� � ���� �⁄ )
��(���� � ���� �⁄ ) �− �

��
��

����

� (8)

GA , GB  The Detector Gain Factors

The detector gain or efficiency factors can be determined in several different ways.  For a given ratio 
measurement, they might be a single factor that expresses the relative ion collection and conversion-to-
signal efficiencies between two different detectors.  For pulse-counting, this might be determined by 
repeated measurements of a stable ion beam that is magnetically switched between the two detectors.  

The method used for most MC-ICPMS analyses at LLNL is to measure two or more ratios simultaneously 
in a certified reference material.  One of these ratios is measured on detectors where the gains are known 
by other means.  For example, the 235U/238U ratio is measured for CRM U010 on two Faraday cups, where 
the relative Faraday gain factors are known through electronic calibration of the detection system.  This 
measured ratio can then be used to determine a mass bias correction factor, for 234U/235U for example, 
����/���, where 234U is measured on a pulse-counting detector (e.g., Det1) and 235U is measured on a 
Faraday cup.

����.����. = ����/�������.����. (9)



Having ����.����. it is possible to calculate the detector gain factor for Det1 pulse-counter relative to a 
Faraday cup.   Simplified, this equation is

��������/���� = ����.����.
����.����.

(10)

Embedded in this equation are isotope ratio measurements that have almost all of the same functional 
dependencies as Eq. 4.  The standard uncertainty for a single measurement of ����.����. contains these 
components, and if only one measurement is made, that standard uncertainty should be used.  In practice,
for MC-ICPMS, multiple analyses of the standard are made during the analytical session, and the average 
value is used for a given pulse-counting detector. The standard uncertainty on the gain factor is taken as 
the larger of the dispersion of these measurements, or the pooled estimate of the dispersion of the gain 
factor for that detector based on historical data.

�� , ��   The Signal Measurements

The correction to a signal for an isotope measured on a pulse-counting detector for the dead-time of that 
detection system (using a signal for isotope A, ��, as an example) is

�� = ��
(�����) (11)

Where Qi is the signal from isotope A for cycle i expressed in counts per second (cps) and τ is the dead-
time for that detector in seconds.  The sensitivity coefficients for �� with respect to �� and τ are:

���
���

= �
(�����)� (12)

���
�� = ���

(�����)� (13)

The standard uncertainty for �� is calculated from the partitioning equation given below, and the standard 
uncertainty for the dead-time, �, is determined when the value is determined.  A discussion of methods to 
determine dead-time is beyond the scope of this document.

��, ��   The Spike Corrections

The function for the spike-correction, using �� for this example, depends on the intensity of the spike 
isotope, call this Ci, and the ratio of isotope A to C in the pure spike.  In practice, the correction should be 
made using biased values for this ratio, because the calculated correction will be subtracted from the 
measured signal intensity before it is corrected for instrumental mass bias.   This formulation assumes 
that the spike isotope is not present in the un-spiked sample.  

�� = ��
��

������
�� (14)

The sensitivity coefficients for this equation are  ���
���

= ��
��

������
  and   ���

���
��

������
= ��.



Further, ��
��

������
is  ��

��
�����

   divided  by  ��/� , and the standard uncertainty on this ratio will contain 

a small contribution from the uncertainty on this mass bias correction factor.

4. The partitioning equation

The partitioning equation is used to partition the Type A standard uncertainty measured on the average 

isotope ratio  ��
� ∑ ��

��
�
��� �  into components due to �� and  �� .  These components are assigned as the 

standard uncertainties on �� and �� (Eq.4), and are used in the calculation of the combined standard 
uncertainty.   This method of partitioning allows the calculated uncertainty on the ratio to be assigned to 
the components based on their ion beam intensities, with assurance that, when recombined, they will 
recapture that Type A calculation.  More components are considered using this formulation and the 
uncertainty budget is more complete.  The details follow:

To partition the standard uncertainty, �� �⁄ , determined for the isotope ratio � �⁄ measured by 
simultaneous multi-collection, into uncertainties from the numerator �� , and from the denominator  ��, 
use Eq. 15 and 16

���
� �

�
+ ���

� �
�

= ��� �⁄
�� �� ��

�
(15)

��
��

= √�
√� (16)

Equation 15 is an expression derived from the law of propagation of uncertainty, and Eq. 16 assumes that 
the uncertainty on the measured ion beam signal is the square-root of that signal, i.e., that it follows a 
Poisson distribution.  Solving for the only two unknowns, �� and U�, the solutions to are given by Eq. 17 
and 18.

�� = ��� �⁄
�� �� �� ����

���
√�
√� (17)

�� = ��� �⁄
�� �� �� ����

��� (18)

In practice, the units expressing the signal intensity do not matter.  The signal intensity can be expressed 
as counts, a count rate, a voltage or amperage as long as the same units are used for both the numerator 
and the denominator.

5. The sensitivity coefficients

In the following formulas the summation signs are preserved, because a summation of partial derivatives 
is equivalent to the partial derivative of the sum. The partial derivatives of Eq. 4 with respect to each 
variable follow.  The summations are all over the total number of measurement cycles, � = 1 �� �.

First, for the numerator:
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�
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�
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���/�
���

∗ = ��/�
��
��

�
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(���������) (21)

���/�
�� = ��/�

��
��

�
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(���������) (22)

���/�
�� = ��/�
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��

�
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(���������) (23)

���/�
���

∗ = ��/�
��
��

�
� ∑ ��

(���������) (24)

And then the denominator:

���/�
���

= ��/���
�
� ∑ �(���������)(���������)

[��(���������)]� (25)

���/�
���

= ��/�
��
��

�
� ∑ �(���������)

(���������)� (26)

���/�
�� = ��/�
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��

�
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(���������)� (27)
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�
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(���������)� (28)

���/�
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= ��/�
��
��

�
� ∑ (���������)

(���������)� (29)

It is relatively simple to make these calculations on a cycle-by-cycle basis, and it is the accurate way to 
determine the values of these sensitivity coefficients.  They could be calculated using an average value for 
each variable, which simplifies to a set of 11 calculations (instead of 11  n), but the calculation of the 
uncertainty will be only approximate.    This is because the mean of ratios does not equal the sum of the 
numerators over the sum of the denominators.

�
� ∑ ���

��
��

��� ≠ ∑ ���
���

∑ ���
���

(30)

Once the values of the sensitivity coefficients and the standard uncertainties of the input parameters are 
determined, the combined standard uncertainty on �� �⁄ is simply calculated according to GUM.

6. Conclusions

It is important that the uncertainties on isotope ratio measurements used for IAEA safeguards be a 
complete and accurate representation of the quality and reliability of the results, so that any conclusions 



that are drawn or actions that may be taken based on these measurements rest on a firm metrological
foundation. Because all environmental samples taken for safeguards are unique, the calculation of the 
uncertainty for mass spectrometric measurements of these samples must rely on first principles, and a 
rigorous application of GUM. The equations given in this paper are the applications of these principles 
that have been developed and adopted at LLNL for analyses of bulk environmental samples collected for 
IAEA safeguards.

7. Acknowledgements

Support for this work has been provided by the  USDOE/NNSA Office of Nonproliferation and 
International Security, Office of Nuclear Verification (NA-243).

REFERENCES

[1] JCGM 100:2008 GUM 1995 with minor corrections.  “Evaluation of measurement data — Guide to 
the expression of uncertainty in measurement”

Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. 
Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.


